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Abstract— Machine learning is an emerging technology 
that can be used in multiple domains, including autonomous 
driving.  This approach is explored in the present study case of 
1:10 scale car components, delivering performances and 
further thoughts on full-scale implementation of an artificial 
neural network in the area of self-driving automobiles. The 
frames taken from live recording pass through an artificial 
neural network and return a steering angle.  Even though the 
components used had limited specifications, the artificial 
neural network proved successful, with quite high accuracy in 
keeping the car on track, parking and maintaining smooth 
drive. 

Keywords— artificial neural networks, autonomous driving, 
machine learning  

I. INTRODUCTION  

Commonly used methods for autonomous driving 
assistance systems (ADAS) count on Global Navigation 
Satellite System (GNSS) or Differential Global Positioning 
Systems, but knowledge derived from it is not sufficiently 
detailed and precise. Therefore a fusion of inertial systems 
with GNSS was used for many years in the autonomous 
driving development [1]. Smartphones’ capabilities have also 
been tried [2], but the accuracy and independency offered by 
these approaches are below the necessities. Perception of the 
car improved when sensors were added to the vehicle’s 
structure and thus new lines of action and research emerged, 
such as visual odometry and Simultaneous Localization and 
Mapping (SLAM), [3]. 

Improvement in the field is still undergoing, with 
advances in 3D laser scanning [4] for road boundaries and 
lane line detection or 2D laser images used in continuous 
measurement and evaluation of lane-based pavement distress 
[5]. These kinds of approaches avoid as much background 
noise as possible, making it possible to work even off-road, 
or eliminating the iterative trial-and-error parameters setting 
and computations. However, a long period of time spent and 
working on techniques such as using Digital Highway Data 
Vehicle (DHDV), new thresholding strategies of Linear 
Support vector Machine (LVSM) [5] need to compensate for 
the good performances. Even methods of Model Predictive 
Control are used for autonomous driving in different 
conditions, [6]. 

Full-scale autonomous driving is addressed by an 
increased number of companies, as it may be the technology 
decreasing the number of automobile deaths. The main 
approach used in the present time is sensor fusion, 

information inputted from lidar, radar, ultrasound and 
cameras being processed into a decisional process that 
ensures safe navigation.  However, Tesla and Google have 
used in public statements ideas and keywords regarding 
artificial intelligence based on artificial neural networks [7, 
8]. The synergy of the sensors cumulates into a tested basis 
that can be built upon. Therefore, machine learning is 
gaining momentum in this field. The chosen onset for the 
task of designing a self-driving 1:10 car was also artificial 
neural networks. 

A short commentary on artificial neural networks will be 
further presented. The main idea is to simulate densely 
interconnected brain cells to get the computer learn by itself 
[9]. The constructive unit of a neural network is the neuron 
that computes simple calculations and sends the information 
to interconnected neurons. They are arranged in layers that 
connect only to neighboring layers, each fulfilling a specific 
task with a respective function of the weights attached to it. 
The information enters each layer and proceeds to the next 
one in a processed manner, until an outcome is issued. Each 
network contains an input and output layer and all the other 
hidden layers. The input units receive forms of data that the 
network will attempt to learn about and process, while the 
output units signal how it responds to learnt information, [9]. 
Training a neural network basically means calibrating all of 
the weights by repeating two steps, forward propagation and 
back propagation. For forward propagation, a set of weights 
is applied to the input data and an output is calculated. 
Weights can be selected randomly, as null, or as an intuitive 
approximation. For back propagation, the margin of error of 
the output is measured and weights are adjusted to decrease 
the error. Thus, these methods are repeated until the weights 
are calibrated accurately to predict an output, [10]. 
Activation functions in each layer decide if the neurons are 
fired or not. This activation is needed because the neuron 
does not know the ranges in which our network should work, 
so a function is imposed to make outer connections consider 
the neuron activated. An ideal function would be one that 
determines sparse and correct activations, therefore creating 
a more efficient and lighter network.  

In 2017 MIT published a research in which the consumer 
interest in self-driving cars was presented. 48% of the 3000 
participants of the study said they would never purchase a 
car that completely drives itself. The data suggest a 
proportional shift away from comfort with full automation, 
[11]. That may be understood as this is a technology that 
deals with people’s lives. However, it is a technology that 
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may be improved until it delivers positive results over time 
and in various tests. 

This paper takes into account the limitations of the small 
and moderately powerful components, both hardware and 
software, and applies the technology of artificial neural 
networks, folded over the specifications. The approach is 
used to investigate a more plain and entry level of control 
and processing, from which to further build upon. 

 

Fig. 1. Block Diagram of the process 

In Fig.1 a MATLAB Simulink Block Diagram of the 
whole process is represented which outlines the functional 
blocks for a better understanding. The inputs from the 
camera, the frames, are used by the neural network to output 
a predicted angle. The Nucleo controller is used to process 
the velocity, the GPS coordinated and the predicted angle 
measurements.  

In the following sections, functionality and results will be 
elaborated. In the System Specifications section, details 
about the components, the logic behind, the testing 
expectations and procedure will be given. The Results and 
discussions section provides observations on the car behavior 
and further improvements. Finally some concluding remarks 
are presented in the Conclusions section. 

II. SYSTEM SPECIFICATIONS 

A. Components 

The 1:10 scale car is composed of energy supplied in the 
form of LiPo battery, a ReelyElektroOnroad-Chassis ARR 
with wheels, a model vehicle body, an RC 540 Reely 
electric motor, a steering servo drive, STM Nucleo 
Controller board, Raspberry Pi board, electric motor driver, 
incremental rotary encoder.  Fig.2 presents the components’ 
layout. The 2 controllers are fixed in the back of the car, 
over the nested electric motor that powers the back wheels. 
The encoder is put in a relatively more open space, and the 
battery is secured in the other side. The forward-inner 
section is more open to allow the camera to be placed in its 
support and for its cable strap to not be interfered with. The 
servo motor controlling the front wheels is located 
underneath the frontal chassis part. 

Regarding dimensions, the car has 20cm width, 43cm 
length and 15cm height, while the considered road is 73cm 
wide, with 2 lanes of 35cm each and white line marks of 1cm 
width on margins and in the middle.  

B. Navigation 

The navigation is based on the developed artificial neural 
network, using the Raspberry Pi camera V2 available, and no 
other sensors for the time being. Specifically, staying in own 
lane with a smooth and continuous drive, without abrupt and 
too frequent steering was accomplished by training an 
artificial neural network of 9 layers developed using Python 
3.2 environment. 

 

Fig. 2. Car components layout 

 This study case used a supervised learning regression 
training that enters the domain of behavioral cloning, a 
technique that takes decision inputs from a process and 
simulates the decisions in similar environments.  

The road the car drives onto contains white lines as 
boundaries and middle delimitation of the 2 directions, all 
over a dark surface, similar to real life conditions. 
Constraints regarding memory and processing frequency of 
the Raspberry Pi processor lead to such a small architecture. 
However, the dimensions were enough for driving us to 
relevant conclusions. Using available artificial neural 
networks architecture several trials were made, but the 
dimensions of the neural networks exceeded those of a 
favorable outcome. The architecture was influenced by 
NVIDIA article “End to End Learning for Self-Driving 
Cars”, [12]. Actual training of the network was made on an 
Intel I7 processor of a separate machine, having taken into 
consideration Raspberry Pi’s specifications.  This was made 
possible since the training module outputs a model file that is 
transmittable. The file, with extension “.ckpt” also enables a 
continuous use of the network, being able to further improve 
it by training over the already existent model. Further 
expanding on the architecture of the convolutional neural 
network (CNN), represented in Fig. 1, the final version of the 
developed neural network consists of inputs as the pixels 
from the live camera frames, a normalization layer, 5 
convolutional layers, 3 fully connected layers and outputs 
that return the steering angle for the captured situation. The 
normalization layer maps the angles in [-1, 1] range. The 
convolutional layers answer to the purpose of feature 
extraction. The first 3 use kernels of dimensions 5x5x3 and a 
stride of 2, extracting the plain features, while the last 2 
convolutional layers have kernels of size 3x3 with no stride, 
choosing out the more sophisticated features. After the last 
convolutional layer the activation map is flattened to match 
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the input type of the fully connected layers, from 
multidimensional array to 1-dimensional array.  

For training, a dropout of 15% was used, disabled during 
testing. 

The loss function computes the mean-square between the 
prediction and the labels and an Adam optimizer finds the 
most influencing weights on the output and updates them to 
the corrected values. The activation function used is the 
classic nonlinear ReLu, as it handles most of the situations 
well, with its function: 

A(x)= max(0, x)    [1] 

 

Fig. 3. Convolutional neural network architecture. The network has about 
27 million connections and 250 thousand parameters [6] 

The sequential training underwent a number of 30 epochs 
on ~6000 photos. An epoch is a measure of number of times 
the weights are updated in the training. The number of the 
epochs and the learning rate of 1e-4 were chosen after 
sustaining several tests and assigning a value that secured the 
absence of underfitting and overfitting. To remove a bias 
towards driving straight, the training data includes a higher 
proportion of frames that represent road curves [12]. The 
photos were taken using two tools to drive the scaled car on 
the road: a gamepad application and a keyboard application. 
Each of the frames captured needed to have an angle 
assigned to, and values from joystick and respectively 
keyboard controls were saved for this usage. However, 
several inconsistencies arose: the dependency on the battery 
level of the number of frames relative to the number of 

angles, the different frame rate of the camera to the 
frequency with which the values were cached, the angle in a 
range too small to work with accuracy. Therefore much of 
the volume of assignment process, and thus database, was 
inserted manually and human error may have infiltrated the 
project. On the other hand, manual modifications were 
needed, since if erroneous angles are saved from the 
automatic assignment with the joystick and keyboard, they 
will go through the loss function during training and update 
the weights accordingly, deteriorating the prediction. To 
avoid as much as possible environmental agents of 
distraction, data preprocessing was required. The format 
needed was BGR, as the camera records in this color space, 
and a zone of interest was cropped to only train on smaller 
images that comprised the area over the car’s front body.  

After all the preprocessing and after passing through the 
artificial neural network, the resulted program achieves 4 fps. 

C. GPS-like system 

A video camera based “GPS like” navigation feedback 
system was installed over the track in order to provide geo-
spatial positioning. It allowed the vehicle to determine its 
location and rotation as complex numbers in relation to the 
track as a reference system, with a granularity of 1 second. 
Thus, a parallel with a normal satellite system was 
implemented and brought in possibilities of developing an 
autonomous drive closer to the conventional standards. 

D. Decisional process 

While the camera warms up, the car determines the 
ideal path to the points given as destination. The map of the 
track is available, Fig.4, just as in real-life situations, but 
takes the form of a json file which contains the nodes of an 
oriented graph. Each node of the graph contains 7 fields: 
name, coordinates, the connections with the other nodes 
(ahead, back, left, right) and the type of the node 
(intersection or lane). Based on this oriented graph, an 
adjacency list was made. Each arch from the adjacency list 
has the weight 1, except the intersections which have 
increased weight to create the possibility of finding a path 
with fewer intersections, using Dijkstra algorithm. The 
current node and the previous node are known at each step. 
The algorithm assumes adding the visited nodes in a queue, 
marking the visited field that certifies their presence in it. 
When a deadlock is reached, the current node is eliminated 
from the queue and another unvisited possible node is 
found. At the end of the execution of the algorithm, the 
queue contains the list of the nodes leading to the 
destination point. It also knows when an intersection will 
occur on its path (the nodes from the intersections are 
marked in the graph). Afterwards, the car calculates the 
angle between the current point, the next point and the point 
after the intersection. If the angle is zero, it will go ahead. 
Otherwise, it needs to steer. Efficient steering requires a 
correction regarding the point from which it will start the 
action. The artificial neural network is not used for steering 
in the intersection. Instead, Bezier curves of 4 points taken 
from experimentation were used to take on the desired 
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trajectory. However, since they are not variable, an ideal 
point of starting to steer is needed, thus the correction 
mentioned has been implemented, also taking into 
consideration the granularity of 1 second of the GPS. The 
car preventively stops in any intersection, but stations more 
if it recognizes a stop sign. For that matter, template 
matching in OpenCV was used, with a threshold of 0,7. A 
template image, a stop sign photo, is searched in the source 
image, each frame taken by the camera. The template is slid 

pixel by pixel through the image source. At each location a 
correlation metric is calculated and stored in a result matrix 
which is further looked into to find the highest value. The 
higher these values are, the bigger the possibility to find the 
template in the respective areas. Calibration can be done by 
choosing different thresholds to compare the result matrix 
values to, and determine the presence of the template.  After 
successfully changing directions, the algorithm returns to 
the artificial neural network.  

 

Fig. 4. Racetrack example with dimensions 8m/5.5m and coordinates from GPS 

Another task for the car is parking. The coordinates of 
the center of the parking lot were known, so a function 
dependent on both the current coordinates and the ideal 
point from which to park could be made. From that point, 2 
Bezier curves were applied for parallel parking, specifically 
a maximum curve to the right (22 degrees being the 
constructive limit of the wheels’ rotation) and next a 
maximum curve to the left (-22 degrees), like a driver would 
park with its back laterally. The recognition of the park sign 
is decisive, since it would not park if there is technically no 
permission.  Throughout the route, the car drives with a 
speed of 25cm/s, regulated by a PID controller.  
 

E. Testing 

For this matter, physical racetracks were used, as in 
Fig.4. The START and STOP locations are placed on the 
figure, as well as the B point where the parking is to be 
performed. These locations are given beforehand, as a driver 
knows where he starts his journey and where he wants to 
arrive. The abrupt red line indicates the trajectory calculated 
by the car as best and also taken by the vehicle, passing 
through the big intersection only once, since it has a higher 
weight as the smaller intersections. From point to point there 
are some numbers indicating the coordinates the GPS-like 
system gives when in that position. Fig.5 shows the 

racetrack from a spectator’s perspective, not as a schema. 
The first tests comprised of neural networks trained on only 
about 300 photos and 15 epochs, but it was clear that the 
approach may work, since, even though the trainings were 
that small, the car had only few derailments, that were 
resolved by modifying the database. Another take on testing 
was coding a pseudo-GPS, mimicking the one implemented 
on the official racetrack, with keyboard-inputted 
coordinates. 

Before this, the algorithm for path finding was also 
tested on the computer, and further included in the manual 
GPS algorithm. After several successful tests, the codes 
were included in the main program of the car.   

Fig. 6 and 7 present a scenario of testing, with Fig.3 
having encircled the predicted angle for the frame in the 
car’s perspective from Fig.4. The minus sign states the 
direction, left in this case. More specific, when the frame 
represented is taken from the camera and passed through the 
neural network, the car decides that it should take a left turn 
with a 15 degrees angle. 

The car has not been tested with obstacles on the road, 
since the algorithms for such a case have not yet been 
implemented. 
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Fig. 5. Racetrack aerial view 

 

Fig. 6. Predicted angle 

 

Fig. 7. Car’s perspective 

III. RESULTS AND DISCUSSIONS 

The lane tracking was successful, but only under certain 
conditions. Since the training images were taken only once, 
at a certain time of the day, the different lighting affected 
the performances. The network had the option to have the 
outputs calibrated, but only to a certain point.  

What the network really needs is significantly more 
datasets, with different environmental conditions, from 
lighting, to obstacles, etc. A more powerful and faster mean 
of data processing would also be useful. To that effect, 
Movidius stick and restriction of python libraries would be 
mentioned.  

The Movidius stick is a GPU (Graphics Processing Unit) 
that can be directly attached to the Raspberry for better 
graphical processing. Using only Numpy and Scipy Python 
libraries could provide a much faster result.  

In our case, the libraries included in the project count 
OpenCV and TensorFlow, but employing only mathematical 
logic with the mentioned Python libraries would lead to a far 
better use of the memory and time. Another optimization 
would be variable Bezier curves and variable parking. In the 
study case, these were fixed, and the results were dependent 

on luck too, specifically depending on where the car would 
stop and what orientation it would have, since even a 2% 
change in these parameters would generate a different 
outcome. However, it is valuable that the car also managed 
to maintain itself in its lane on a different arrangement of 
the track. Another result worth mentioning is the first place 
in Bosch Future Mobility Challenge 2018, a competition 
specific in automating this type of car.  

In Fig.8 is presented how the car behaved when in new 
environment lighting, which, in this particular case, was 
distant to data-sampling lighting. From a 3 minute drive, the 
time for which the car followed its lane was gathered and 
the 2 were compared. 

It was shown that in the beginning, until the calibration 
was fully done, the car had some derailments, since different 
turns appeared in its path, but from a certain moment, in 
which we declared the calibration was finished, the car had 
no trouble following the lines.  

Fig.8 recreates a path without any intersections, focusing 
only on the way the light influences the car and how the car 
behaves during calibration. Fig.9 focuses on the car going 
on different paths that do contain intersections, but the data 
was taken in the absence of the GPS feedback.  With this 
setup, the graph shows how the cars ability to pass through 
intersections. The majority of the iterations involve a 
number of successful passings fewer than the total passings. 

This effect was caused by the presence of the big 
intersection in the path of the car. Even if the car often 
manages to successfully pass by an intersection, there are 
times when the outcome is unfavorable. This issue is to be 
solved with the GPS-like system that concerns itself with 
the ideal positioning of the car when an intersection follows. 

The generalization of the project is possible within a 
certain condition, one of them being a varied database. In 
this case, as we mentioned, it was necessary to calibrate the 
neural network if the testing environment had different 
lighting than the data gathering environment. However, the 
order and length of curves and the length of the straight road 
had no influence, as it proved to behave similar with 
different arrangements. The lighting was what influenced 
the abilities of the car. Another requirement would be for 
the car to start on the track, as if it is positioned off-road, it 
moves, at a first glance, randomly. It does not move literally 
random, since it actually tries to find anything that would 
resemble its known environment of white lines over a darker 
surface. It has been observed that, if on the track rays of 
sunlight unveiled parallel to the white borders, in the middle 
of the road, the car would act as if the light was the actual 
border and try to keep itself between them. 

IV. CONCLUSIONS 

The final result of the project is a 1:10 scale car that is 
able to keep itself on designated lane, with curves, for an 
unspecified amount of time, conditioned that the lines are 
continuous and no interrupt of the path is present. It has also 
spawned a result of often but not always being able to deal 
with intersections, conditioned by a GPS-like system with 
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high accuracy that can communicate with the car. These 
results have come to be due to the artificial neural network 
implemented on the car.  

It is worth emphasizing that the scale of the project is 
reduced. However, the components have also restrictions 
with respect to these dimensions. A full scale car that also 
owns components, hardware and software with much better 
performances and additional body parts is likely to manage 
similar full-scale situations. Further research on such projects 

deserves to be made, since, with the limited components this 
case study had, it delivered satisfying performances. A much 
broader database would be needed, incorporating also 
different situations, not only lane keeping. 

 The approach of neural networks dives into the 
environment layers of the car deeper and more detailed, with 
better reliability than classical vision processing and may 
build up the path to a real autonomous car.  

 

Fig. 8. Time spent on track (blue) from a total predefined time (red), in this case 3 minutes 

 

Fig. 9. Number of intersections correctly passed (red)from total number of intersections from test run (blue) 
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