
Intelligent Autonomous Driving

Popa Alexandra, Toderean Bianca, Toderean Liana-Maria, Ulici Ioana-Anamaria, Rusu-Both Roxana, Miclea Liviu-Cristian
Automation Department

Technical University of Cluj-Napoca, Cluj-Napoca, Romania
(roxana.both@aut.utcluj.ro, ulici.ioana@yahoo.com, bianca.toderean@gmail.com)

Abstract— Machine learning is an emerging technology
that can be used in multiple domains, including autonomous
driving. This approach is explored in the present study case of
1:10 scale car components, delivering performances and
further thoughts on full-scale implementation of an artificial
neural network in the area of self-driving automobiles. The
frames taken from live recording pass through an artificial
neural network and return a steering angle. Even though the
components used had limited specifications, the artificial
neural network proved successful, with quite high accuracy in
keeping the car on track, parking and maintaining smooth
drive.

Keywords— artificial neural networks, autonomous driving,
machine learning

I. INTRODUCTION

Commonly used methods for autonomous driving
assistance systems (ADAS) count on Global Navigation
Satellite System (GNSS) or Differential Global Positioning
Systems, but knowledge derived from it is not sufficiently
detailed and precise. Therefore a fusion of inertial systems
with GNSS was used for many years in the autonomous
driving development [1]. Smartphones’ capabilities have also
been tried [2], but the accuracy and independency offered by
these approaches are below the necessities. Perception of the
car improved when sensors were added to the vehicle’s
structure and thus new lines of action and research emerged,
such as visual odometry and Simultaneous Localization and
Mapping (SLAM), [3].

Improvement in the field is still undergoing, with
advances in 3D laser scanning [4] for road boundaries and
lane line detection or 2D laser images used in continuous
measurement and evaluation of lane-based pavement distress
[5]. These kinds of approaches avoid as much background
noise as possible, making it possible to work even off-road,
or eliminating the iterative trial-and-error parameters setting
and computations. However, a long period of time spent and
working on techniques such as using Digital Highway Data
Vehicle (DHDV), new thresholding strategies of Linear
Support vector Machine (LVSM) [5] need to compensate for
the good performances. Even methods of Model Predictive
Control are used for autonomous driving in different
conditions, [6].

Full-scale autonomous driving is addressed by an
increased number of companies, as it may be the technology
decreasing the number of automobile deaths. The main
approach used in the present time is sensor fusion,

information inputted from lidar, radar, ultrasound and
cameras being processed into a decisional process that
ensures safe navigation. However, Tesla and Google have
used in public statements ideas and keywords regarding
artificial intelligence based on artificial neural networks [7,
8]. The synergy of the sensors cumulates into a tested basis
that can be built upon. Therefore, machine learning is
gaining momentum in this field. The chosen onset for the
task of designing a self-driving 1:10 car was also artificial
neural networks.

A short commentary on artificial neural networks will be
further presented. The main idea is to simulate densely
interconnected brain cells to get the computer learn by itself
[9]. The constructive unit of a neural network is the neuron
that computes simple calculations and sends the information
to interconnected neurons. They are arranged in layers that
connect only to neighboring layers, each fulfilling a specific
task with a respective function of the weights attached to it.
The information enters each layer and proceeds to the next
one in a processed manner, until an outcome is issued. Each
network contains an input and output layer and all the other
hidden layers. The input units receive forms of data that the
network will attempt to learn about and process, while the
output units signal how it responds to learnt information, [9].
Training a neural network basically means calibrating all of
the weights by repeating two steps, forward propagation and
back propagation. For forward propagation, a set of weights
is applied to the input data and an output is calculated.
Weights can be selected randomly, as null, or as an intuitive
approximation. For back propagation, the margin of error of
the output is measured and weights are adjusted to decrease
the error. Thus, these methods are repeated until the weights
are calibrated accurately to predict an output, [10].
Activation functions in each layer decide if the neurons are
fired or not. This activation is needed because the neuron
does not know the ranges in which our network should work,
so a function is imposed to make outer connections consider
the neuron activated. An ideal function would be one that
determines sparse and correct activations, therefore creating
a more efficient and lighter network.

In 2017 MIT published a research in which the consumer
interest in self-driving cars was presented. 48% of the 3000
participants of the study said they would never purchase a
car that completely drives itself. The data suggest a
proportional shift away from comfort with full automation,
[11]. That may be understood as this is a technology that
deals with people’s lives. However, it is a technology that

2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)

978-1-5386-4444-7/18/$31.00 ©2018 IEEE 53

may be improved until it delivers positive results over time
and in various tests.

This paper takes into account the limitations of the small
and moderately powerful components, both hardware and
software, and applies the technology of artificial neural
networks, folded over the specifications. The approach is
used to investigate a more plain and entry level of control
and processing, from which to further build upon.

Fig. 1. Block Diagram of the process

In Fig.1 a MATLAB Simulink Block Diagram of the
whole process is represented which outlines the functional
blocks for a better understanding. The inputs from the
camera, the frames, are used by the neural network to output
a predicted angle. The Nucleo controller is used to process
the velocity, the GPS coordinated and the predicted angle
measurements.

In the following sections, functionality and results will be
elaborated. In the System Specifications section, details
about the components, the logic behind, the testing
expectations and procedure will be given. The Results and
discussions section provides observations on the car behavior
and further improvements. Finally some concluding remarks
are presented in the Conclusions section.

II. SYSTEM SPECIFICATIONS

A. Components

The 1:10 scale car is composed of energy supplied in the
form of LiPo battery, a ReelyElektroOnroad-Chassis ARR
with wheels, a model vehicle body, an RC 540 Reely
electric motor, a steering servo drive, STM Nucleo
Controller board, Raspberry Pi board, electric motor driver,
incremental rotary encoder. Fig.2 presents the components’
layout. The 2 controllers are fixed in the back of the car,
over the nested electric motor that powers the back wheels.
The encoder is put in a relatively more open space, and the
battery is secured in the other side. The forward-inner
section is more open to allow the camera to be placed in its
support and for its cable strap to not be interfered with. The
servo motor controlling the front wheels is located
underneath the frontal chassis part.

Regarding dimensions, the car has 20cm width, 43cm
length and 15cm height, while the considered road is 73cm
wide, with 2 lanes of 35cm each and white line marks of 1cm
width on margins and in the middle.

B. Navigation

The navigation is based on the developed artificial neural
network, using the Raspberry Pi camera V2 available, and no
other sensors for the time being. Specifically, staying in own
lane with a smooth and continuous drive, without abrupt and
too frequent steering was accomplished by training an
artificial neural network of 9 layers developed using Python
3.2 environment.

Fig. 2. Car components layout

 This study case used a supervised learning regression
training that enters the domain of behavioral cloning, a
technique that takes decision inputs from a process and
simulates the decisions in similar environments.

The road the car drives onto contains white lines as
boundaries and middle delimitation of the 2 directions, all
over a dark surface, similar to real life conditions.
Constraints regarding memory and processing frequency of
the Raspberry Pi processor lead to such a small architecture.
However, the dimensions were enough for driving us to
relevant conclusions. Using available artificial neural
networks architecture several trials were made, but the
dimensions of the neural networks exceeded those of a
favorable outcome. The architecture was influenced by
NVIDIA article “End to End Learning for Self-Driving
Cars”, [12]. Actual training of the network was made on an
Intel I7 processor of a separate machine, having taken into
consideration Raspberry Pi’s specifications. This was made
possible since the training module outputs a model file that is
transmittable. The file, with extension “.ckpt” also enables a
continuous use of the network, being able to further improve
it by training over the already existent model. Further
expanding on the architecture of the convolutional neural
network (CNN), represented in Fig. 1, the final version of the
developed neural network consists of inputs as the pixels
from the live camera frames, a normalization layer, 5
convolutional layers, 3 fully connected layers and outputs
that return the steering angle for the captured situation. The
normalization layer maps the angles in [-1, 1] range. The
convolutional layers answer to the purpose of feature
extraction. The first 3 use kernels of dimensions 5x5x3 and a
stride of 2, extracting the plain features, while the last 2
convolutional layers have kernels of size 3x3 with no stride,
choosing out the more sophisticated features. After the last
convolutional layer the activation map is flattened to match

54

the input type of the fully connected layers, from
multidimensional array to 1-dimensional array.

For training, a dropout of 15% was used, disabled during
testing.

The loss function computes the mean-square between the
prediction and the labels and an Adam optimizer finds the
most influencing weights on the output and updates them to
the corrected values. The activation function used is the
classic nonlinear ReLu, as it handles most of the situations
well, with its function:

A(x)= max(0, x) [1]

Fig. 3. Convolutional neural network architecture. The network has about
27 million connections and 250 thousand parameters [6]

The sequential training underwent a number of 30 epochs
on ~6000 photos. An epoch is a measure of number of times
the weights are updated in the training. The number of the
epochs and the learning rate of 1e-4 were chosen after
sustaining several tests and assigning a value that secured the
absence of underfitting and overfitting. To remove a bias
towards driving straight, the training data includes a higher
proportion of frames that represent road curves [12]. The
photos were taken using two tools to drive the scaled car on
the road: a gamepad application and a keyboard application.
Each of the frames captured needed to have an angle
assigned to, and values from joystick and respectively
keyboard controls were saved for this usage. However,
several inconsistencies arose: the dependency on the battery
level of the number of frames relative to the number of

angles, the different frame rate of the camera to the
frequency with which the values were cached, the angle in a
range too small to work with accuracy. Therefore much of
the volume of assignment process, and thus database, was
inserted manually and human error may have infiltrated the
project. On the other hand, manual modifications were
needed, since if erroneous angles are saved from the
automatic assignment with the joystick and keyboard, they
will go through the loss function during training and update
the weights accordingly, deteriorating the prediction. To
avoid as much as possible environmental agents of
distraction, data preprocessing was required. The format
needed was BGR, as the camera records in this color space,
and a zone of interest was cropped to only train on smaller
images that comprised the area over the car’s front body.

After all the preprocessing and after passing through the
artificial neural network, the resulted program achieves 4 fps.

C. GPS-like system

A video camera based “GPS like” navigation feedback
system was installed over the track in order to provide geo-
spatial positioning. It allowed the vehicle to determine its
location and rotation as complex numbers in relation to the
track as a reference system, with a granularity of 1 second.
Thus, a parallel with a normal satellite system was
implemented and brought in possibilities of developing an
autonomous drive closer to the conventional standards.

D. Decisional process

While the camera warms up, the car determines the
ideal path to the points given as destination. The map of the
track is available, Fig.4, just as in real-life situations, but
takes the form of a json file which contains the nodes of an
oriented graph. Each node of the graph contains 7 fields:
name, coordinates, the connections with the other nodes
(ahead, back, left, right) and the type of the node
(intersection or lane). Based on this oriented graph, an
adjacency list was made. Each arch from the adjacency list
has the weight 1, except the intersections which have
increased weight to create the possibility of finding a path
with fewer intersections, using Dijkstra algorithm. The
current node and the previous node are known at each step.
The algorithm assumes adding the visited nodes in a queue,
marking the visited field that certifies their presence in it.
When a deadlock is reached, the current node is eliminated
from the queue and another unvisited possible node is
found. At the end of the execution of the algorithm, the
queue contains the list of the nodes leading to the
destination point. It also knows when an intersection will
occur on its path (the nodes from the intersections are
marked in the graph). Afterwards, the car calculates the
angle between the current point, the next point and the point
after the intersection. If the angle is zero, it will go ahead.
Otherwise, it needs to steer. Efficient steering requires a
correction regarding the point from which it will start the
action. The artificial neural network is not used for steering
in the intersection. Instead, Bezier curves of 4 points taken
from experimentation were used to take on the desired

55

trajectory. However, since they are not variable, an ideal
point of starting to steer is needed, thus the correction
mentioned has been implemented, also taking into
consideration the granularity of 1 second of the GPS. The
car preventively stops in any intersection, but stations more
if it recognizes a stop sign. For that matter, template
matching in OpenCV was used, with a threshold of 0,7. A
template image, a stop sign photo, is searched in the source
image, each frame taken by the camera. The template is slid

pixel by pixel through the image source. At each location a
correlation metric is calculated and stored in a result matrix
which is further looked into to find the highest value. The
higher these values are, the bigger the possibility to find the
template in the respective areas. Calibration can be done by
choosing different thresholds to compare the result matrix
values to, and determine the presence of the template. After
successfully changing directions, the algorithm returns to
the artificial neural network.

Fig. 4. Racetrack example with dimensions 8m/5.5m and coordinates from GPS

Another task for the car is parking. The coordinates of
the center of the parking lot were known, so a function
dependent on both the current coordinates and the ideal
point from which to park could be made. From that point, 2
Bezier curves were applied for parallel parking, specifically
a maximum curve to the right (22 degrees being the
constructive limit of the wheels’ rotation) and next a
maximum curve to the left (-22 degrees), like a driver would
park with its back laterally. The recognition of the park sign
is decisive, since it would not park if there is technically no
permission. Throughout the route, the car drives with a
speed of 25cm/s, regulated by a PID controller.

E. Testing

For this matter, physical racetracks were used, as in
Fig.4. The START and STOP locations are placed on the
figure, as well as the B point where the parking is to be
performed. These locations are given beforehand, as a driver
knows where he starts his journey and where he wants to
arrive. The abrupt red line indicates the trajectory calculated
by the car as best and also taken by the vehicle, passing
through the big intersection only once, since it has a higher
weight as the smaller intersections. From point to point there
are some numbers indicating the coordinates the GPS-like
system gives when in that position. Fig.5 shows the

racetrack from a spectator’s perspective, not as a schema.
The first tests comprised of neural networks trained on only
about 300 photos and 15 epochs, but it was clear that the
approach may work, since, even though the trainings were
that small, the car had only few derailments, that were
resolved by modifying the database. Another take on testing
was coding a pseudo-GPS, mimicking the one implemented
on the official racetrack, with keyboard-inputted
coordinates.

Before this, the algorithm for path finding was also
tested on the computer, and further included in the manual
GPS algorithm. After several successful tests, the codes
were included in the main program of the car.

Fig. 6 and 7 present a scenario of testing, with Fig.3
having encircled the predicted angle for the frame in the
car’s perspective from Fig.4. The minus sign states the
direction, left in this case. More specific, when the frame
represented is taken from the camera and passed through the
neural network, the car decides that it should take a left turn
with a 15 degrees angle.

The car has not been tested with obstacles on the road,
since the algorithms for such a case have not yet been
implemented.

56

Fig. 5. Racetrack aerial view

Fig. 6. Predicted angle

Fig. 7. Car’s perspective

III. RESULTS AND DISCUSSIONS

The lane tracking was successful, but only under certain
conditions. Since the training images were taken only once,
at a certain time of the day, the different lighting affected
the performances. The network had the option to have the
outputs calibrated, but only to a certain point.

What the network really needs is significantly more
datasets, with different environmental conditions, from
lighting, to obstacles, etc. A more powerful and faster mean
of data processing would also be useful. To that effect,
Movidius stick and restriction of python libraries would be
mentioned.

The Movidius stick is a GPU (Graphics Processing Unit)
that can be directly attached to the Raspberry for better
graphical processing. Using only Numpy and Scipy Python
libraries could provide a much faster result.

In our case, the libraries included in the project count
OpenCV and TensorFlow, but employing only mathematical
logic with the mentioned Python libraries would lead to a far
better use of the memory and time. Another optimization
would be variable Bezier curves and variable parking. In the
study case, these were fixed, and the results were dependent

on luck too, specifically depending on where the car would
stop and what orientation it would have, since even a 2%
change in these parameters would generate a different
outcome. However, it is valuable that the car also managed
to maintain itself in its lane on a different arrangement of
the track. Another result worth mentioning is the first place
in Bosch Future Mobility Challenge 2018, a competition
specific in automating this type of car.

In Fig.8 is presented how the car behaved when in new
environment lighting, which, in this particular case, was
distant to data-sampling lighting. From a 3 minute drive, the
time for which the car followed its lane was gathered and
the 2 were compared.

It was shown that in the beginning, until the calibration
was fully done, the car had some derailments, since different
turns appeared in its path, but from a certain moment, in
which we declared the calibration was finished, the car had
no trouble following the lines.

Fig.8 recreates a path without any intersections, focusing
only on the way the light influences the car and how the car
behaves during calibration. Fig.9 focuses on the car going
on different paths that do contain intersections, but the data
was taken in the absence of the GPS feedback. With this
setup, the graph shows how the cars ability to pass through
intersections. The majority of the iterations involve a
number of successful passings fewer than the total passings.

This effect was caused by the presence of the big
intersection in the path of the car. Even if the car often
manages to successfully pass by an intersection, there are
times when the outcome is unfavorable. This issue is to be
solved with the GPS-like system that concerns itself with
the ideal positioning of the car when an intersection follows.

The generalization of the project is possible within a
certain condition, one of them being a varied database. In
this case, as we mentioned, it was necessary to calibrate the
neural network if the testing environment had different
lighting than the data gathering environment. However, the
order and length of curves and the length of the straight road
had no influence, as it proved to behave similar with
different arrangements. The lighting was what influenced
the abilities of the car. Another requirement would be for
the car to start on the track, as if it is positioned off-road, it
moves, at a first glance, randomly. It does not move literally
random, since it actually tries to find anything that would
resemble its known environment of white lines over a darker
surface. It has been observed that, if on the track rays of
sunlight unveiled parallel to the white borders, in the middle
of the road, the car would act as if the light was the actual
border and try to keep itself between them.

IV. CONCLUSIONS

The final result of the project is a 1:10 scale car that is
able to keep itself on designated lane, with curves, for an
unspecified amount of time, conditioned that the lines are
continuous and no interrupt of the path is present. It has also
spawned a result of often but not always being able to deal
with intersections, conditioned by a GPS-like system with

57

high accuracy that can communicate with the car. These
results have come to be due to the artificial neural network
implemented on the car.

It is worth emphasizing that the scale of the project is
reduced. However, the components have also restrictions
with respect to these dimensions. A full scale car that also
owns components, hardware and software with much better
performances and additional body parts is likely to manage
similar full-scale situations. Further research on such projects

deserves to be made, since, with the limited components this
case study had, it delivered satisfying performances. A much
broader database would be needed, incorporating also
different situations, not only lane keeping.

 The approach of neural networks dives into the
environment layers of the car deeper and more detailed, with
better reliability than classical vision processing and may
build up the path to a real autonomous car.

Fig. 8. Time spent on track (blue) from a total predefined time (red), in this case 3 minutes

Fig. 9. Number of intersections correctly passed (red)from total number of intersections from test run (blue)

ACKNOWLEDGMENTS

This work was supported by a grant of the Romanian
National Authority for Scientific Research and Innovation,
CNCS – UEFISCDI, project number PN-III-P1-1.2-PCCDI-
2017-0734, contract number 72PCCDI ⁄ 2018.

Expressing thanks also to the Bosch Engineering Center
Cluj.

REFERENCES
[1] J.Z. Sasiadek, P.Hartana, “GPS/INS Sensor Fusion for Accurate

Positioning and Navigation Based on Kalman Filtering”, IFAC Proc.
Vol. 37, 2004

[2] P.A.Zandbergen, “Accuracy of iPhone locations: A comparison
of assisted GPS, WiFi and cellular positioning” Trans. GIS, vol.13,
2009

[3] F.demim, A. Nemra, K. Louadj, “Robust SVSF-SLAM for
Unmanned Vehicle in Unknown Environment”, IFAC-PapersOnLine
, vol. 49, 2016

[4] F. Jiemenez, M. Clavijo, F. Castellanos, C. Avarez, “Accurate and
Detailed Transversal Road Section Characteristics Extraction Using
Lase Scanner”, Appl. Sci. 2018, 8(5), 724

[5] L. Li, W. Luo, K.C.P. Wang, “Lane Marking Detection and
Reconstruction wity Line-Scan Imaging Data”, Sensors (Basel). 2018
May 20;18(5)

[6] K.Liu, J. Gong, S. Chen, Y. Zhang, H. Chen, “Model Predictive
Stabilization Control of High-Speed Autonomous Ground Vehicles
Considering the Effect of Road Topography”, Appl. Sci. 2018, 8(5)

[7] Tesla autopilot homepage, www.tesla.com/en_EU/AUTOPILOT

[8] Google waymo tech webpage, https://waymo.com/

[9] C. Woodford, “Neural Networks”,
www.explainthatstuff.com/introduction-to-neural-networks.html

[10] S. Miller, “Mind: How to build a Neural Network (Part One)”
https://stevenmiller888.github.io/mind-how-to-build-a-neural-
network/

[11] H. Abraham, B. Reimer, B. Seppelt, C. Fitzgerald, B. Mehler& J. F.
Coughlin, “Consumer Interest in Automation: Change over One
Year”, Transportation Research Board 97th Annual Meeting, Project:
Trust and Vehicle Technology, 2018

[12] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P.
Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J.
Zhao, K Zieba, “End to End Learning for Self-Driving Cars”, Cornell
University Library, arXiv:1604.07316

58

